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TWISTED ARROW WING DESIGNED FOR 

A MACH NUMBER OF 3.0* 
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SUMMARY 

A n  invest igat ion has been conducted t o  determine the  aerodynamic 
charac te r i s t ics  i n  p i tch  at Mach number 2.01 of an airplane conf'igura- 
t i o n  having an arrow wing with 7 5 O  of leading-edge sweep and with camber 
and twist t o  produce an optimum load d is t r ibu t ion  a t  a l i f t  coeff ic ient  
of 0.1 and a Mach number of 3.0. NACA R4 ~ 5 8 ~ 2 1  repor t s  the  r e s u l t s  of 
previous tes ts  of the same airplane configuration a t  Mach numbers of 
2.36 and 2.87. 
wing-thickness r a t i o s  normal t o  the  leading edges vary from 9 t o  14  per- 
cent.  Tests of  the  complete configuration and of various combinations 
of components were made with the  or ig ina l  wing apex and the  modified 
wing apex. Additional tests w e r e  made t o  determine the  e f f e c t s  of wing 
fences and wing-body-juncture f a i r ings  on t h e  upper-surface flow. 

The aspect r a t i o  f o r  the configuration i s  1.79, and 

Reynolds number f o r  a l l  t e s t s ,  based on the mean geometric chord, 
was 5.8 x 10 6 . 
components . Transit ion was fixed near the  leading edges of  a l l  

The maximum l i f t -d rag  r a t i o  of 7.0 f o r  the  complete configuration 
a t  r4ach number 2.01 showed l i t t l e  or no increase over t h a t  previously 
measured a t  Mach number 2.36. 
despi te  the  lower i n i t i a l  component of veloci ty  normal t o  the  leading 
edges a t  Mach number 2.01, t he  flow separated i n  the  same manner as it 
had a t  Mach numbers of 2.36 and 2.87. 
body-juncture f a i r ings  increased the l i f t -d rag  r a t i o  by about 0.3. The 
l i f t -drag  r a t i o  w a s  e s sen t i a l ly  unaffected by the  appreciable modifica- 
t i o n  of  the wing apex. 

Luminescent-oil-flow studies  showed t h a t  

The use of fences and la rge  wing- 
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INTRODUCTION 

Reference 1 describes i n  d e t a i l  an experimental invest igat ion i n  
the  Langley Unitary Plan wind tunnel a t  Mach numbers of 2.36 and 2.87 
of an airplane configuration having a highly swept arrow wing cambered 
and twisted t o  provide an optimum load dis t r ibu t ion  at a l i f t  coef f ic ien t  
of 0.1 and a blach number of 3.0. 
r e s u l t s  f o r  t he  same configuration at  a Mach number of 2.87 and compares 
these r e s u l t s  with those f o r  several  configurations designed t o  s a t i s f y  
t h e  same requirements. The l i f t -d rag  r a t i o s  reported i n  reference 1 f o r  
the tests a t  Mach numbers 2.36 and 2.87 were considerably below those 
ant ic ipated.  
the  performance deficiency appeared t o  be the  r e s u l t  of extensive upper- 
surface flow separation a r i s ing  from cross-flow Mach numbers greater  than 
unity.  A n  increase i n  l i f t -drag r a t i o  w a s  noted when Mach number was 
decreased from 2.87 t o  2.36. Because the  cross-flow component at low 
lift coef f ic ien ts  might be subc r i t i ca l  a t  a Mach number of 2.01 and might 
produce clean upper-surface flow, the  present b r i e f  invest igat ion w a s  
i n i t i a t e d  at the  Langley 4- by 4-foot supersonic pressure tunnel. 

Reference 2 b r i e f l y  summarizes the  

In  the  analysis  of these data, reference 1 indica tes  t ha t  

For t he  tes ts  of t h i s  configuration a t  a Mach number of 2.01, t he  
6 Reynolds number based on the  mean geometric chord w a s  5.8 x 10 , and 

t r a n s i t i o n  was f ixed near the  leading edges of a l l  components. 
angle of a t t ack  was varied from -4O t o  80. 
p le t e  configuration and of the  various combinations of components. In  
order t o  improve upper-surface flow, some tests were made with wing 
fences, with generous f a i r ings  a t  t h e  wing-body junctures, o r  with both 
fences and fa i r ings .  

The 
T e s t s  were made of t he  com- 

The r e s u l t s  a r e  presented with l imited analysis .  

SYMBOLS 

CD 

CL 

cm 

drag coeff ic ient ,  - Drag 
qs  

L i f t  l i f t  coeff ic ient ,  - 
qs 

pitching-moment coeff ic ient  (reference center located a t  apex 
of wing t r a i l i n g  edge), - moment 

wing mean aerodynamic chord, in.  

l i f t  -drag r a t i o  
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4 free-stream dynamic pressure, lb/sq ft  

S t o t a l  wing area, sq f t  
e 

U angle of a t t ack  of balance axis (balance axis i s  2' noseup 
r e l a t i v e  t o  wing reference plane), deg 

P Mach number parameter, dM2 - 1 

Sub sc r ip t  : 

UBX maximum 

Components : 

B body 

B' body w i t h  l a rge  body-wing f a i r i n g  

F v e r t i c a l  f i n s  

N nacel les  and pylons 

W wing 

W' wing with modified wing-apex sect ion 

wing w i t h  fences wf 

MODELS AND EQUIPMENT 

The pr inc ipa l  dimensions of t h e  complete model and of t h e  wing- 
body configurations are presented i n  the three-view drawings of f igure  1. 
The 7 5 O  swept arrow-wing model, which was designed t o  meet the volume 
requirements of a Mach number 3 long-range bomber, w a s  first tested i n  
the Langley Unitary Plan wind tunnel. Reference 1 repor t s  the  r e s u l t s  
of these tests, describes the model design i n  detail ,  and shows dimen- 
sions of a l l  t he  model components. 

The wing and fuselage were constructed of aluminum and were s t ing-  
mounted w i t h  a six-component strain-gage balance enclosed within the  
fuselage. Pressure o r i f i c e s  were provided inside the fuselage base f o r  
t h e  measurement of base pressure. Total  and s t a t i c  pressures were meas- 
ured a t  t h e  e x i t s  of two nacel les  (one inboard and one outboard) by 
means of sting-mounted rakes. The e x i t  diameters of the nacel les  were 
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enlarged 0.050 inch, and boundary-layer t r ans i t i on  was f ixed on the  
i n l e t  spikes i n  order t h a t  the  i n l e t s  be s ta r ted .  In  an attempt t o  
improve the  flow over the  upper surface of the  wing, the  o r ig ina l  model 
was a l so  t e s t ed  with f a i r ings  added a t  the  wing-body juncture and with 
a fence mounted on each semispan. 
surfaces and completely covered t h e  discontinuity i n  the upper-surface 
wing juncture and the  portion of the  fuselage ahead of the  cy l indr ica l  
section. From the  forward pa r t  of t he  cy l indr ica l  fuselage sect ion 
toward the  rear, the  f a i r ings  were tangent t o  both the  fuselage and wing 
surfaces and diminished i n  r a d i i  u n t i l  they disappeared a t  a s t a t ion  
approximately 28 inches from the  wing apex. (See f i g .  l ( b ) . )  The fences 

1 were constructed of --inch-thick steel and were f i t t e d  t o  t h e  wing nor- 
16 

mal t o  the  l o c a l  wing surface. The leading edges of the  fences were 
swept approximately 4 5 O  with respect t o  the  loca l  wing surface and were 
sharpened t o  a loo wedge. The height above the  l o c a l  surface of t h e  
w i n g  varied l i nea r ly  from 1/2 inch at t h e  f ron t  of the fence t o  3/4 inch 
at the  wing t r a i l i n g  edge. 

The f a i r ings  were tangent t o  the  wing 

Fence locat ions are  shown i n  f igure  l ( b ) .  

Tests were a l so  made with a modified wing-apex section on the  or ig-  
i n a l  model. Approximately 9 inches of the  o r ig ina l  wing apex was cut 
off and was replaced with a modified wing-apex section. 
The modified wing-apex section differed from the  o r ig ina l  i n  t h a t  i t s  
cross sections normal t o  the  model axis formed e s sen t i a l ly  f l a t  out l ines  
instead of t he  inverted vee cross sections formed by the  o r ig ina l  wing- 
apex section. 
than fo r  the  o r ig ina l  section. Ordinates f o r  t he  modified wing-apex 
section a re  given i n  t ab le  I. 

(See f i g .  l ( c ) . )  

Also, the  wing apex w a s  lower f o r  the  modified section 

TESTS 

The t e s t s  were conducted i n  the  Langley 4- by 4-foot supersonic 

The Reynolds 
pressure tunnel a t  a Mach number of 2.01, a stagnation pressure of 
14.5 lb/sq in . ,  and a stagnation temperature of 110' F. 

6 number based on c' w a s  5.8 x 10 . The stagnation dewpoint was low 
enough (-250 F o r  l e s s )  t o  avoid s ignif icant  condensation e f fec ts .  
models were sting-mounted, and p i tch  t e s t s  of the  complete models were 
made f o r  an angle-of-attack range of about -4' t o  loo. 

The 

A l l  t e s t s  were made with f ixed t rans i t ion .  The t r ans i t i on  s t r i p s  
were 1/8-inch-wide bands of No. 60 carborundum grains  sparsely applied 
t o  the  surfaces with p l a s t i c  spray. The bands were located on both sur- 
faces  of t h e  wing, on the f in s ,  and around each of t he  s i x  nacelles 
approximately 1/4 inch from t h e  leading edges of the  various components 
i n  a streamwise direct ion.  
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A flow-visualization technique, which u t i l i z e d  a f luorescent  o i l  
painted on the wing surface, w a s  a l so  employed f o r  some tests. 
photographs of the wing surface, made w i t h  the tunnel  i n  operation, 
indicate  airflow d i rec t ion  on t h e  surface. 

me’ 

CORRECTIONS AND ACCURACY 

The angles of a t t ack  have been corrected f o r  def lect ion of t h e  
s t i ng  and balance under load. 
make the base pressures correspond t o  the free-stream s t a t i c  pressure. 
The axial-force da ta  were corrected t o  remove the contribution of i n t e r -  
n a l  drag of the six nacelles.  

The force data have been corrected t o  

A n  estimate of t he  probable e r ro r s  introduced i n  the present da ta  
and based upon the  balance accuracy and t h e  r epea tab i l i t y  of the  data 
i s  as follows: 

C L . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  kO.002 

C D . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  *O.OoO4 
c,. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  kO.002 
a, deg . . . . . . . . . . . . . . . . . . . . . . . . . . . .  f0.10 

PRESENTATION OF RESULTS 

The results of t h i s  invest igat ion are presented i n  the following 
f igure  s : 

Figure 

Aerodynamic cha rac t e r i s t i c s  of the  o r ig ina l  wing-body 
configuration alone, w i t h  f i n s ,  and wi th  f i n s  and nacel les  . . 2 

Aerodynamic charac te r i s t ics  of the modified wing-body con- 
f igura t ion  alone, w i t h  f i n s ,  and w i t h  f i n s  and nacel les  . . .  3 

Comparison of the aerodynamic charac te r i s t ics  of the o r ig ina l  
wing-body configuration with the  modified wing-body con- 
f igura t ion  . . . . . . . . . . . . . . . . . . . . . . . . . .  4 

Comparison of t he  aerodynamic charac te r i s t ics  of t h e  complete 
configuration w i t h  the  o r ig ina l  wing apex w i t h  complete 
configuration w i t h  the  modified wing apex . . . . . . . . . .  5 
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Figure 

Aerodynamic cha rac t e r i s t i c s  of the  complete configuration 
(o r ig ina l  wing apex) alone, with wing-body fa i r ings ,  and 
with wing-body f a i r ings  and wing fences . . . . . . . . . . . .  6 

Oil-flow photographs of various model configurations . . . . .  7 t o  10 

11 Variation of CD with C z  f o r  several  model configurations . . 
Variation of maximum l i f t -d rag  r a t i o  with Mach number f o r  t h e  

various model configurations . . . . . . . . . . . . . . . . .  12 

RESULTS AND DISCUSSION 

Wing-Body Configuration 

M a x i m u m  l i f t -d rag  r a t i o  f o r  t he  wing-body configuration was approxi- 

mately 8.0. 

approximately 0.29, which i s  much higher than the  theore t ica l  value of 
about 0.15 f o r  a wing of t h i s  plan form designed i n  a similar manner f o r  

Mach number 2.0. The theo re t i ca l  value of - f o r  the  design Mach 

number of 3.0 w a s  coincidentally 0.15, a lso .  (See f i g .  3 of ref.  3. )  

The experimental value of - cD a t  Mach number 2.01 was 
PCL2 

CD 

PCL2 

The experimental value of - cD i n  reference 1 f o r  Mach number 2.87 was 
PCL2 

about 0.27. 
mum a t  Mach number 2.01, could be p a r t i a l l y  responsible f o r  the  high 
drag due t o  l i f t ,  the oil-flow photographs of t he  wing-body configura- 
t i ons  ( f i g s .  7(a)  and 8(a))  indicate t h a t  t he  f a u l t  i s  l a rge ly  due t o  
areas  of separated flow extending a l l  the  way out t o  the  wing t i p s .  The 
ea r ly  separation of the  flow a t  the  wing t i p s  i s  re f lec ted  i n  the  
"pitch-up" property of the  pitching-moment curves ( f ig .  4 (a ) ) .  

Although the  wing shape, which may have been far from opt i -  

Effect of Vert ical  Fins 

The addi t ion of v e r t i c a l  f i n s  t o  the  wing-body configuration with 
e i t h e r  t he  o r ig ina l  o r  modified wing apex increased the  l i f t -curve  slope 
( f ig s .  2 (a )  and 3 ( a ) ) .  This increase together with a reduction i n  the 
drag increment due t o  the  addition of f i n s  as angle of a t tack  increased, 
provided a lower drag due t o  l i f t  ( f ig .  11) than w a s  obtained with t h e  
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wing-body configuration without f in s .  Comparison of t he  oil-flow photo- 
graphs of t he  configuration with f i n s  with those of t he  configuration 
without f i n s  ( f ig s .  7 and 8) shows t h a t  the  addi t ion of f i n s  reduced t h e  
extent  of flow separation by preventing the  separation i n  t h e  inboard 
regions from spreading t o  the  wing t i p s .  
f i n s  i s  probably most apparent i n  the  comparison of t he  pitching-moment 
data f o r  t h e  configurations with and without f i n s  ( f ig s .  2(a) and 3(a)) .  
The addi t ion of f i n s  and the  attendant re tent ion of l i f t  a t  the  wing 
t i p s  are seen t o  produce a much more l i nea r  pitching-moment curve. 

The "fencingf1 e f f e c t s  of t h e  

Effects  of Wing-Apex Shape 

Comparison of t he  data  f o r  t he  wing-body configuration with t h e  
o r ig ina l  wing apex with t h e  configuration with modified w i n g  apex shows 
l i t t l e  if any change i n  l i f t -curve  slope o r  drag below maximum l i f t -d rag  
r a t i o  ( f i g .  4 ) .  
t h e  higher l i f t  coef f ic ien ts  f o r  t he  configuration with the  o r ig ina l  
wing apex ( f i g .  11). Oil-flow photographs ( f ig .  8) show t h a t  t he  modi- 
f i e d  wing apex generated two strong vort ices  a t  t he  nose of t h e  config- 
urations.  The complete configuration with the  modified wing apex showed 
a higher trim l i f t  coef f ic ien t  and somewhat l e s s  s t a b i l i t y  ( f i g .  5 )  than 
the  complete configuration with the  o r ig ina l  wing apex. Some improve- 
ment might have resu l ted  i f  the  modified apex had been posit ioned at a 
lower angle t o  e f f ec t  a reduction i n  v o r t i c i t y  over t he  wing-apex sec- 
t i o n  and a smoother upwash d i s t r ibu t ion  ahead of t he  remainder of t he  
span. 

The drag due t o  l i f t  appears t o  be s l i g h t l y  lower a t  

Effect of Engine Nacelles 

Engine nacel les  provided an interference l i f t  as evidenced by t h e  
l i f t  curves of f igures  2 and 3. 
and 3 )  must arise from the  interference f i e l d  of t he  nacel les  which were 
located on the  rearward portions of the  wing. 
t h a t  t he  i n l e t s ,  which were designed f o r  Mach number 3.0, were operating 
i n  an off-design condition (center-body shock w e l l  ahead of t he  i n l e t  
l i p s ) .  
f o r i t h e  t es t  Mach number. 
s i x  nacel les  w a s  about 0.0018 a t  zero l i f t  ( f i g s .  2(a)  and 3(a) ) .  

The change i n  longi tudinal  t r i m  ( f i g s .  2 

It should be noted here 

Less interference e f f ec t s  would be expected f o r  i n l e t s  designed 
The drag increment due t o  the  addi t ion of t he  

Effects  of Fairings and Fences 

The oil-flow photographs ( f i g ,  9 )  show cleaner flow near the  wing- 
body juncture when f a i r ings  were used. 
addition of fences reduces the extent of upper-surface flow separation. 

Figure 10 indicates  t h a t  t he  
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This reduction resu l ted  i n  an increase i n  l i f t -curve slope ( f ig .  6 ) .  
The l i f t -d rag  r a t i o  f o r  t he  complete configuration with f a i r i n g s  and 
fences was increased t o  approximately 7.3. 

Summary of Lift-Drag Ratio Results 

Maximum l i f t -d rag  r a t i o  of t he  wing-body configuration with e i t h e r  
the  o r ig ina l  wing apex o r  the  modified wing apex was approximately 8.0 
( f ig s .  2(a) and 3(a)) .  The addition of f i n s  reduced the maximum l i f t -  
drag r a t i o  t o  about 7.6. 
configuration without f a i r ings  o r  fences) resul ted i n  a maximum l i f t -  
drag r a t i o  of approximately 7.0 ( f i g s .  2(a)  and 3(a)) .  
addition of f a i r i n g s  and fences ra i sed  the maximum l i f t d r a g  r a t i o  t o  
about 7.3 ( f i g .  6 (a) ) .  

Addition of nacel les  (cons t i tu t ing  a complete 

The fu r the r  

Figure I 2  compares the  present r e s u l t s  w i t h  those of reference 1. 
The improvement i n  upper-surface f l o w  and the  attendant increase i n  
l i f t -d rag  r a t i o  expected with the  reduction of t he  component of veloci ty  
normal t o  the  leading edge when Mach number w a s  reduced from 2.36 t o  
2.01 did not mater ia l ize .  The favorable e f f ec t  of reducing t h e  i n i t i a l  
ve loc i ty  component normal t o  the  leading edge (ref.  3) appears t o  have 
been o f f s e t  by an increase i n  l i f t  requirement and i n  induced ve loc i ty  
normal t o  the  leading edge. 

CONCLUDING REMARKS 

An invest igat ion has been conducted t o  determine the  aerodynamic 
cha rac t e r i s t i c s  i n  p i t ch  a t  Mach number 2.01 of an airplane configura- 
t i o n  having an arrow wing with 75' of leading-edge sweep and with camber 
and t w i s t  t o  produce an optimum load d i s t r ibu t ion  a t  a l i f t  coef f ic ien t  
of 0.1 and a Mach number of 3.0. 
on the  mean geometric chord, was 5.8 x 10 . 
the  leading edges of a l l  components. 

Reynolds number f o r  a l l  tests, based 
Transit ion was fixed near 6 

The maximum l i f t -d rag  r a t i o  of 7.0 f o r  t he  complete configuration 
a t  Mach number of 2.01 showed l i t t l e  o r  no increase over t h a t  previously 
measured a t  Mach number 2.36. 
despi te  t he  lower i n i t i a l  component of veloci ty  normal t o  the  leading 
edges a t  Mach number 2.01, the flow separated i n  the  same manner as it 
had a t  Mach numbers of 2.36 and 2.87. 
body-juncture f a i r ings  increased the  l i f t -d rag  r a t i o  by about 0.3. 

Luminescent-oil-flow studies  showed t h a t  

The use of fences and la rge  wing- 
The 
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l i f t -d rag  r a t i o  was e s sen t i a l ly  unaffected by the appreciable modifica- 
t i o n  of t he  wing apex. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Field,  Va. ,  May 27, 1959. 
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TABLE .I. - WING ORDINATES FOR MODIFIED WING-APEX SECTION 

[All diuensions a re  i n  inches. Ordinates t o  the upper and lower surfaces,  zu and z l ,  are  measured normal t o  wing 
reference plane which i s  pa ra l l e l  t o  f r ee  stream when the wing 16  a t  design a t t i t ude .  Ordinates a re  pos i t ive  upward.] 

Z U  2 1  Y 

o.Oo0 I 2.220 I 2.200 

ZU 21 

x = 1.555 

O.Oo0 
.075 
.150 
.225 
.m 
.375 
.450 
,525 
. a 0  
.675 
.750 
.m 

1.050 

O.Oo0 I 2.058 I 1.682 

1.282 
1.312 
1.337 
1.362 
1.359 
1.360 
1.357 
1.551 
1.541 
1.327 
1.307 
1.258 
1.202 

2.023 1.692 
1.985 
1.950 1.712 
1 . 9 6  1 - 7 3  
1.852 1.746 

.416 1.805 1.805 

1.200 
1.350 
1.500 
1.625 
1.6645 

x = 3.106 
1.136 

.gl8 

.7m 

.705 

1.043 0 .ooo 
-075 
.150 
.225 
.w 
,375 
.450 
.525 
.6€0 
A75 
.750 
.m 
.e323 

O.Oo0 
-075 
.150 
.225 
.m 
.375 
.450 
.525 
.6€0 
.675 
.750 
.825 
.w 
.975 

1.050 
1.125 
1.200 
1.2484 

1.832 
1.815 
1.798 
1.776 
1.756 
1.732 
1.705 
1.671 
1.652 
1.586 
1.526 
1.473 
1.418 

1.561 
1.574 
1.583 
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Lift coefficient, CL 

(a) Variation of C, and a with CL. 

Figure 2.- Aerodynamic characteristics of the original wing-body con- 
figuration alone, with fins, and with fins and nacelles. 



Lift coefficient, CL 

(b) Variation of L/D and CD with CL. 

Figure 2.- Concluded. 
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Lift coefficient, CL 

(a)  Variation of C, and a with CL. 

Figure 3.- Aerodynamic c h a r a c t e r i s t i c s  of t h e  modified wing-body con- 
f i g u r a t i o n  alone, with f i n s ,  and with f i n o  and nace l l e s .  



Lift coefficient, CL 

(b) Variation of L/D and CD w i t h  CL. 

Figure 3.- Concluded. 
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Lif t  coefficient, CL 

(a) Variation of Cm and a with CL. 

Figure 4.- Comparison of the aerodynamic characteristics of the origi- 
nal wing-body configuration with those of the modified wing-body 
configuration. 



Lift coefficient, CL 

(b) Variation of L/D and CD with  CL. 

Figure 4. - Concluded. 
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a, deg 

Lift coefficient, CL 

(a) Variation of C, and a with CL. 

Figure 5.- Comparison of the aerodynamic characteristics of the complete 
configuration with the original wing apex with the complete configu- 
ration with the modified wing apex. 
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Lift coefficient, CL 

(b) Variation of L/D and CD with CL. 

Figure 5.- Concluded. 
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Lift coefficient, C, 

(a) Variation of C, and a, with CL. 

Figure 6.- Aerodynamic characteristics of the complete configuration 
(original wing apex) alone, with wing-body fairing, and with wing- 
body fairing and wing fences. 



Lift coefficient, C ,  

(b) Variation of L/D and CD with CL. 

Figure 6.- Concluded. 
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(a) Wing-body configuration. L59-3017 
Figure 7.- Luminescent-oil-flow photographs of configuration with orig- 

inal wing-apex section. 
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(b) Complete configuration. 

Figure 7. - Concluded. 
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(a) Wing-body configuration. L-59- 3019 

Figure 8.- Luminescent-oil-flow photographs of configurations with mod- 
ified wing-apex section. 



a ~ 3 . 5 ~  
W ' B F N  

(b) Complete configuration. L-39-3020 

Figure 8.- Concluded. 



(a) Complete configuration. L-59-3021 

Figure 9.- Luminescent-oil-flow photographs of complete model configu- 
r a t i o n  w i t h  o r i g i n a l  wing-apex sect ion.  

\ 
\ 



L-59-3022 
(b)  Complete configuration with wing-body juncture f a i r i n g .  

Figure 9. - Concluded. 



(a) a = 1.4' and 3 . 5 O .  L-59-3023 

Figure 10.- Complete configuration with o r i g i n a l  wing-apex section, 
wing-body-juncture f a i r ings ,  and wing fences. 
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(b) 

Figure 10. - Concluded. 
a = 4.7' and 5.6'. 
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Figure 11.- Variation of CD with CL2 for  several model 
configurations . 
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